Senin, 10 Desember 2012
Bola (geometri)
Jajar genjang
Jajar genjang atau Jajaran genjang (inggris parallelogram) adalah bangun datar dua dimensi yang dibentuk oleh dua pasang rusukyang masing-masing sama panjang dan sejajar dengan pasangannya, dan memiliki dua pasang sudut bukan siku-siku yang masing-masing sama besar dengan sudut di hadapannya.
Jajar genjang dengan empat rusuk yang sama panjang disebut belah ketupat.
Rumus jajar genjang
- Keliling
- Luas
Trapesium (geometri)
Trapesium adalah bangun datar dua dimensi yang dibentuk oleh empat buah rusuk yang dua diantaranya saling sejajar namun tidak sama panjang.
Trapesium termasuk jenis bangun datar segi empat.
Trapesium yang rusuk ketiganya tegak lurus terhadap rusuk-rusuk sejajar disebut trapesium siku-siku.
Jenis-jenis trapesium
Trapesium terdiri dari 3 jenis, yaitu:
1. Trapesium sembarang, yaitu trapesium yang keempat rusuknya tidak sama panjang. Trapesium ini tidak memiliki simetri lipat maupun simetri putar.
2. Trapesium sama kaki, yaitu trapesium yang mempunyai sepasang rusuk yang sama panjang, di samping mempunyai sepasang rusuk yang sejajar. Trapesium ini memiliki satu simetri lipat dan satu simetri putar.
3. Trapesium siku-siku, yaitu trapesium yang mana dua di antara keempat sudutnya merupakan sudut siku-siku. Rusuk-rusuk yang sejajar tegak lurus dengan tinggi trapesium ini.
Rumus trapesium
Keliling
Luas
Layang-layang (geometri)
Layang-layang adalah bangun datar dua dimensi yang dibentuk oleh dua pasang rusuk yang masing-masing pasangannya sama panjang dan saling membentuk sudut.
Layang-layang dengan keempat rusuk yang sama panjang disebut belah ketupat.
Rumus Layang-layang
Keliling
Luas
Persegi panjang
Persegi panjang (inggris rectangle) adalah bangun datar dua dimensi yang dibentuk oleh dua pasang rusuk yang masing-masing sama panjang dan sejajar dengan pasangannya, dan memiliki empat buah sudut yang kesemuanya adalah sudut siku-siku.
Rusuk terpanjang disebut sebagai panjang dan rusuk terpendek disebut sebagai lebar .
Persegi panjang yang keempat rusuknya sama panjang disebut sebagai persegi
Rumus persegi panjang
Keliling
k : keliling2156 p : panjang l : lebar
Luas
Panjang diagonal
Lingkaran
Dalam geometri Euklid, sebuah lingkaran adalah himpunan semua titik pada bidang dalam jarak tertentu, yang disebut jari-jari, dari suatu titik tertentu, yang disebut pusat. Lingkaran adalah contoh dari kurva tertutup sederhana, membagi bidang menjadi bagian dalam dan bagian luar.
Elemen lingkaran
Elemen-elemen yang terdapat pada lingkaran, yaitu :
- Elemen lingkaran yang berupa titik, yaitu :
- Titik pusat (P)
merupakan titik tengah lingkaran, dimana jarak titik tersebut dengan titik manapun pada lingkaran selalu tetap.
- Titik pusat (P)
- Elemen lingkaran yang berupa garisan, yaitu :
- Jari-jari (R)
merupakan garis lurus yang menghubungkan titik pusat dengan lingkaran. - Tali busur (TB)
merupakan garis lurus di dalam lingkaran yang memotong lingkaran pada dua titik yang berbeda. - Busur (B)
merupakan garis lengkung baik terbuka, maupun tertutup yang berimpit dengan lingkaran. - Keliling lingkaran (K)
merupakan busur terpanjang pada lingkaran. - Diameter (D)
merupakan tali busur terbesar yang panjangnya adalah dua kali dari jari-jarinya. Diameter ini membagi lingkaran sama luas. - Apotema
merupakan garis terpendek antara tali busur dan pusat lingkaran.
- Jari-jari (R)
- Elemen lingkaran yang berupa luasan, yaitu :
- Juring (J)
merupakan daerah pada lingkaran yang dibatasi oleh busur dan dua buah jari-jari yang berada pada kedua ujungnya. - Tembereng (T)
merupakan daerah pada lingkaran yang dibatasi oleh sebuah busur dengan tali busurnya. - Cakram (C)
merupakan semua daerah yang berada di dalam lingkaran. Luasnya yaitu jari-jari kuadrat dikalikan dengan pi. Cakram merupakan juring terbesar.
Persamaan
Suatu lingkaran memiliki persamaan
dengan adalah jari-jari lingkaran dan adalah koordinat pusat lingkaran.
Jika pusat lingkaran terdapat di , maka persamaan di atas dapat dituliskan sebagai
Bentuk persamaan lingkaran dapat dijabarkan juga menjadi bentuk
dengan adalah jari-jari lingkaran dan adalah koordinat pusat lingkaran. Bentuk persamaan tersebut dikenal sebagai bentuk umum persamaan lingkaran.
Persamaan parametrik
Lingkaran dapat pula dirumuskan dalam suatu persamaan parameterik, yaitu
yang apabila dibiarkan menjalani t akan dibuat suatu lintasan berbentuk lingkaran dalam ruang x-y.
Luas lingkaran
Luas lingkaran memiliki rumus
yang dapat diturunkan dengan melakukan integrasi elemen luas suatu lingkaran
dalam koordinat polar, yaitu
Dengan cara yang sama dapat pula dihitung luas setengah lingkaran, seperempat lingkaran, dan bagian-bagian lingkaran. Juga tidak ketinggalan dapat dihitung luas suatu cincin lingkaran dengan jari-jari dalam dan jari-jari luar .
Penjumlahan elemen juring
Luas lingkaran dapat dihitung dengan memotong-motongnya sebagai elemen-elemen dari suatu juring untuk kemudian disusun ulang menjadi sebuah persegi panjang yang luasnya dapat dengan mudah dihitung. Dalam gambar r berarti sama dengan R yaitu jari-jari lingkaran.
Luas juring
Luas juring suatu lingkaran dapat dihitung apabila luas lingkaran dijadikan fungsi dari R dan θ, yaitu;
dengan batasan nilai θ adalah antara 0 dan 2π. Saat θ bernilai 2π, juring yang dihitung adalah juring terluas, atau luas lingkaran.
Luas cincin lingkaran
Suatu cincin lingkaran memiliki luas yang bergantung pada jari-jari dalam dan jari-jari luar , yaitu
di mana untuk rumus ini kembali menjadi rumus luas lingkaran.
Luas potongan cincin lingkaran
Dengan menggabungkan kedua rumus sebelumnya, dapat diperoleh
yang merupakan luas sebuah cincin tak utuh
Keliling lingkaran
Keliling lingkaran memiliki rumus:
Panjang busur lingkaran
Panjang busur suatu lingkaran dapat dihitung dengan menggunakan rumusyang diturunkan dari rumus untuk menghitung panjang suatu kurvadi mana digunakansebagai kurva yang membentuk lingkaran. Tanda mengisyaratkan bahwa terdapat dua buah kurva, yaitu bagian atas dan bagian bawah. Keduanya identik (ingat definisi lingkaran), sehingga sebenarnya hanya perlu dihitung sekali dan hasilnya dikalikan dua.π(Pi)
Nilai pi adalah suatu besaran yang merupakan sifat khusus dari lingkaran, yaitu perbandingan dari keliling K dengan diameternya D:
Langganan:
Postingan (Atom)